![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中国科学院长春光学精密机械与物理研究所
学位:博士
所在单位:机械工程学院
学科:机械制造及其自动化
办公地点:机械学院大方楼5021
联系方式:djwudut@dlut.edu.cn 84707625
电子邮箱:djwudut@dlut.edu.cn
The Effects of Pulse Parameters on Weld Geometry and Microstructure of a Pulsed LaserWelding Ni-Base Alloy Thin Sheet with FillerWire
点击次数:
论文类型:期刊论文
发表时间:2016-10-01
发表刊物:METALS
收录刊物:SCIE、Scopus
卷号:6
期号:10
ISSN号:2075-4701
关键字:pulsed laser welding; filler wire; Hastelloy C-276 thin sheet; weld geometry; microstructure
摘要:Due to its excellent resistance to corrosive environments and its superior mechanical properties, the Ni-based Hastelloy C-276 alloy was chosen as the material of the stator and rotor cans of a nuclear main pump. In the present work, the Hastelloy C-276 thin sheet 0.5 mm in thickness was welded with filler wire by a pulsed laser. The results indicated that the weld pool geometry and microstructure were significantly affected by the duty ratio, which was determined by the pulse duration and repetition rate under a certain heat input. The fusion zone area was mainly affected by the duty ratio, and the relationship was given by a quadratic polynomial equation. The increase in the duty ratio coarsened the grain size, but did not obviously affect microhardness. The weld geometry and base metal dilution rate was manipulated by controlling pulsed parameters without causing significant change to the performance of the weld. However, it should be noted that, with a larger duty ratio, the partial molten zone is a potential weakness of the weld.