![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中国科学院长春光学精密机械与物理研究所
学位:博士
所在单位:机械工程学院
学科:机械制造及其自动化
办公地点:机械学院大方楼5021
联系方式:djwudut@dlut.edu.cn 84707625
电子邮箱:djwudut@dlut.edu.cn
Effect and mechanism of ZrO2 doping on the cracking behavior of melt-grown Al2O3 ceramics prepared by directed laser deposition
点击次数:
论文类型:期刊论文
发表时间:2020-01-01
发表刊物:INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY
收录刊物:EI、SCIE
卷号:17
期号:1
页面范围:227-238
ISSN号:1546-542X
关键字:additive manufacturing; ceramic; crack; laser; melt-grown
摘要:Directed laser deposition (DLD) is a new method for rapidly preparing melt-grown ceramics, but cracking problem greatly limited its application. In this study, cracking behavior of Al2O3 ceramics was suppressed by doping ZrO2. Crack suppression mechanism of ZrO2 doping in melt-grown ceramics was also analyzed. Process parameters which are prone to generating cracks were adopted in the experiments, and they contribute to showing the crack clearly. Results show that ZrO2 doping has remarkable crack suppression effects. It is most obvious when ZrO2 content is 37 mol%. Compared with those of pure Al2O3 ceramics, crack density reduces by 43.2%, and the number of longitudinal main cracks reduces by 63.2%. Doping of ZrO2 forms dense composite microstructure with primary alpha-Al2O3 grains discretely distributing in eutectic continuous matrix. Therefore, initial crack sources are effectively reduced. Morphology of primary Al2O3 grains transforms from cellular to dendritic, which changes crack propagation mode from inter-granular to trans-granular. Mismatch of thermo-physical properties of different phase promotes the arrest, deflection, and bridging phenomena in crack propagation, contributing to crack suppression. On the basis of ZrO2 doping, we have realized the preparation of crack-free eutectic ceramic (37 mol%ZrO2) samples through further process optimization. The maximum size of the sample reaches 230 mm.