个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:知行书院执行院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:信息与通信工程学院
学科:信号与信息处理
办公地点:大连理工大学创新园大厦A525
联系方式:http://www.aisdut.cn/WangBo/index.html
电子邮箱:bowang@dlut.edu.cn
Recording device identification based on cepstral mixed features
点击次数:
论文类型:会议论文
发表时间:2015-09-12
收录刊物:EI
卷号:12-13-September-2015
摘要:The authenticity of the recording evidence is the foundation of legitimacy and relevance, which is the primary condition of recording evidence. With the springing up of private recording evidence, there is an urgent need for authenticity identification of recordings. That the evidence shall be from an accurate and legitimate source is a prerequisite for three elements. Recording equipment identification is the core content of sources of evidence. This article studies the characteristics of the recording device parameters, proposing three characteristic parameters of recording equipment such as the proportion of time-domain low roughness, etc. And combined with improved Mel Frequency Cepstrum Coefficient (MFCC) feature parameters characteristic parameters constitute a hybrid 92-dimensional. According to experimental analysis, with 10 different brands and models of recording device (including five different brands and models commonly used in voice recorder and five kinds of commonly used different brands and models of mobile phones), 60 young men and women, each of 10 different voice, the same type of equipment to record each 2, shows that mixed characteristic parameters can effectively characterize the characteristics of the recording equipment. Recognition rate increases by more than 6% compared with ordinary cepstrum. © Copyright owned by the author(s) under the terms of the Creative Commons.