• 更多栏目

    王跃方

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:动力学与控制. 工程力学. 计算力学
    • 办公地点:大连理工大学,力学楼505室。
    • 联系方式:电子邮件:yfwang@dlut.edu.cn,QQ号:1043160457。
    • 电子邮箱:yfwang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    研究领域

    • 欢迎有志于工程力学、计算力学、装备可靠性研究的同学攻读博士、硕士研究生!就读期间,除了学校正常助学金外,还可获得1年以上的企业带薪实习机会。


      (一)在基础研究方面,主要研究方向为

      (1)计算动力学与非线性振动。

      (2)流体机械(工业压缩机、汽轮机及核电装备)可靠性与破坏失效机理。

      (3)基于多物理场分析的优化设计。

      (4)轴承-密封-转子系统耦合动力学分析。

        先后承担国家自然科学基金面上项目5项、国家自然科学基金重点项目2项、“973”项目课题4项及多项省级科研项目。入选辽宁省优秀青年骨干教师,辽宁省新世纪百千万人才工程千人层次, 教育部科技进步奖三等奖。


      (二)  在应用研究方面,重点围绕工程力学在高端流体机械的工程应用开展工作,先后承担企业委托课题50项以上。

        高端流体机械是石油及天然气采收及输送、石化、精细化工、煤化工、空分等领域工艺流程的核心动力设备,被誉为“大国重器、国之砝码”,是维护国家能源安全、促进经济快速发展的重要保障。先后承担我国石化、化工、能源、国防领域自主研发的重大核心装备——年产百万吨级乙烯装置用压缩机组、第二代核电机组核二级泵、第三代轴封式机组核主泵、十万空分装置用大型压缩机、大型连续式风洞轴流式压缩机、百万千瓦火电机组给水泵、跨国长输石油管线泵等产品的力学分析、评定工作。主要成果为:

      (1)能源装备承压边界完整性。通过数值仿真和实验方法,研究大型动装备在压力、热冲击、地震作用下的承压边界强度、刚度、抗震和耐热性能,确保重大装备的结构可靠性。

      (2)能源装备可运行性。通过半解析法、摄动法和数值方法,结合实验技术,研究大型流体机械转子组件在流、固、热、磁多场相互作用下的动力特性、振动响应和稳定性,确保装置的安全运行。

      (3)高速旋转叶轮疲劳破坏分析。通过动力学建模和仿真,研究能源装备流固激振发生机理,提高装备抗疲劳、断裂能力。

        在本领域的研究成果获辽宁省科技进步一等奖、中国机械工业科学技术奖特等奖及三等奖、 沈阳市科技进步二等奖及三等奖各1项。


      (三)代表性论著

      专著
               孙焕纯、柴山、王跃方.离散变量结构优化设计,大连理工大学出版社,首版1995年,增订版2002年。

      期刊论文

      1.      Yuefang Wang and Albert C.J. Luo. Dynamics of Traveling, Inextensible Cables. Communications in Nonlinear Science and Numerical Simulation. 2004, 9(5), 531-542.

      2.      Yuefang Wang, Lihua Huang and Xuetao Liu. Eigenvalue Analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics. Acta Mechanica Sinica, 2005, 21(5), pp. 485 – 494.

      3.      Sun Huanchun, Wang Yuefang and Chai Shan. A Universal approach for continuous or discrete non-linear programmings with multiple variables and constraints. Applied Mathematics and Mechanics, 2006, 26(10), pp. 1168-1174.

      4.      Wang Yuefang, Liu Xuetao, Huang Lihua. Stability analyses for axially moving strings in nonlinear free and aerodynamically excited vibrations. Chaos, Solitons & Fractals, 2008, 38:421-429.

      5.      Sun Huanchun, Wang Yuefang. Comparison of theories for stability of truss structures, Part One: Computation of critical load. Communications in Nonlinear Science and Numerical Simulation, 2009, 14: 1700-1710.

      6.      Sun Huanchun, Wang Yuefang. Comparison of theories for stability of truss structures, Part Two: Computation of critical solution of stability. Communications in Nonlinear Science and Numerical Simulation, 2009, 14: 1711-1720.

      7.      Lu Lefeng, Wang Yuefang. Delay-induced dynamics of an axially moving string with direct time-delayed velocity feedback. Journal of Sound and Vibration, 2010, 329: 5434–5451.

      8.      Alexander P. Seyranian and Wang Yuefang. On stability of periodic solutions for Duffing’s equation. Reports of Armenian Academy of Sciences, 111(4), 2011

      9.      Wang Yuefang, Lu Lefeng, Huang Lihua. Nonlinear vibration analysis for an airflow-excited translating string. International Journal of Computational Methods, 2012, 9: 1250051-1-1250051-18.

      10.   Luo Haiyang, Wang Yuefang. Nonlinear vibration of a continuum rotor with transverse electromagnetic and bearing excitations. Shock and Vibration, 2012, 19: 1297-1314.

      11.   Wang Yuefang, Wang Sujing, Huang Lihua. Random Vibration Analysis for Impellers of Centrifugal Compressors Through The Pseudo-Excitation Method. International Journal of Computational Methods, 2015, 12: 1540002-1-154002-16.

      12.   Haiyang Luo, Wang Yuefang. Dynamics of a Continuum Rotor with Two Nonlinear Models of Bearing and Transverse Electromagnetic Excitations, Journal of Vibration Engineering Technologies, 2015, 3(1): 49-64.

      13.   Wang Rui, Guo Xinglin, Wang Yuefang. Nonlinear Analysis of Rotor System Supported By Oil Lubricated Bearings Subjected To Base Movements. Proc. IMechE, Part C: Journal of Mechanical Engineering Science, 2016, 230(4): 543-558.

      14.   Wang Yuefang, Liu Zhiwei. Numerical Scheme for Period-M Motion of Second-Order Nonlinear Dynamical Systems Based on Generalized Harmonic Balance Method, Nonlinear Dynamics, 2016, 84: 323-340.

      15.   Cao Xiaojian, Wang Yuefang. Optimization of load–carrying and heat–insulating multi–layered thin-walled structures based on bionics using genetic algorithm, Structural and Multidisciplinary Optimization, 2016, 53: 813-824.

      16.   Haiyang Luo, Wang Yuefang. Global Dynamics Analysis of a Continuum Rotor through G-Function and L-Function Method, Journal of Applied Nonlinear Dynamics, 2016, 5(2): 127-146.

      17.   Zhiwei Liu, Wang Yuefang. Periodicity and Stability in Transverse Motion of a Nonlinear Rotor–Bearing System Using Generalized Harmonic Balance Method, ASME Journal of Engineering for Gas Turbie and Power, 2017,139: 022502-1-022502-9.

      18.   Zhiwei Liu, Kannatey-Asibu E., Wang Yuefang and Epureanu B.I. Nonlinear dynamic analysis of ultrasonic metal welding using a harmonic balance method. Procedia CIRP, 2018, 76: 89-93.

      19.   Xue Jian, Wang Yuefang, Free vibration analysis of a flat stiffened plate with side crack through the Ritz method, Archive of Applied Mechanics, 2019, 89(10), 2089-2102.

      20.   Jin Huang, Yuefang Wang, Transient Analysis for a Twin Spool Rotor with Squeeze-Film Dampers Considering Blade Loss, Journal of Vibration Engineering & Technologies,2020, 8(1):95-104.

      国际会议论文

      1.     Wang Yuefang, Xuetao Liu and Lihua Huang. Eigenvalue and stability analysis for axially moving srings in transverse vibrations. IEEE International Conference on Physics and Control. 2005, August 24-26, Saint Petersburg, Russia.

      2.      Wang Yuefang, Lihua Huang and Lefeng Lu. Equilibrium analysis and design optimization of axially moving structures with aerodynamic stability constraints. Proc. of The 7th World Congress on Structural and Multidisciplinary Optimization, May 21-25, 2007, COEX, Seoul, Korea.

      3.      Wang Yuefang and Lefeng Lu. Nonlinear Transient Vibration of an Axially Moving String with an Attached Travelling Oscillator Under Wind Excitations. ICTAM XXII, August 25-29, Adelaide, Australia.

      4.      Wang Yuefang, Sun Huanchun. On Modeling Global Stability Constraints for Truss Structures. 8th World Congress on Structural and Multidisciplinary Optimization, June 1-5, 2009, Lisbon, Portugal

      5.      Wang Yuefang, Haiyang Luo, Zhenqun Guan. Nonlinear Vibration and Stability of Rotors with Bearing and Transverse Magnetic Excitations, IV European Conference on Computational Mechanics, Paris, France, May 16-21, 2010

      6.      Wang Yuefang, Lefeng Lu. Nonlinear dynamics of aerodynamically excited strings moving with supercritical speeds, ENOC 2011, July 24-29, 2011, Rome, Italy

      7.      Wang Yuefang, Lihua Huang and Lefeng Lu. Eigenvalue analysis of an axially moving string with multiple attached oscillators using Green’s function method, the Eleventh World Congress of Computational Mechanics, July 21-25, 2014, Barcelona, Spain.

      8.      Zhiwei Liu, Wang Yuefang. Periodicity and Stability in Transverse Motion of a Nonlinear Rotor–Bearing System Using Generalized Harmonic Balance Method, GT2016-56269, Proc. ASME Turbo Expo 2016, June 13-17, 2016, Seoul, Korea.

      9.      Wang Yuefang, Yan Liu et al. Random Vibration Analysis For Centrifugal Compressor Impellers With Unsteady Aerodynamic Excitations, GT2016-56419, Proc. ASME Turbo Expo 2016, June 13-17, 2016, Seoul, Korea.

      10.   Jin Huang, Wang Yuefang. Dynamic Modeling Reduction of A Twin-spool Rotor through the Nonlinear Galerkin Method. WCCM XII & APCOM VI, 2016, July 24-29, Seoul, Korea.

      11.   Jin Huang, Wang Yuefang, Sensitivity Analysis of a Large-order Nonlinear Dynamical Rotor System with Parametrical Uncertainties, 10th International Conference on Computational Methods, July 9-13, 2019, Singapore.

      12.   Wang Yuefang, Cao Xiaojian, Hydraulic-Thermal Analysis and Optimization for a Circumferentially Grooved Seal Based on Bulk Flow Theory, 10th International Conference on Computational Methods, July 9-13, 2019, Singapore