教授 博士生导师 硕士生导师
主要任职: 机械工程学院院长、党委副书记
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 机械工程学院
学科: 机械电子工程. 测试计量技术及仪器. 精密仪器及机械
办公地点: 辽宁省大连市大连理工大学机械工程学院知方楼5027
联系方式: 辽宁省大连市大连理工大学机械工程学院,116023
电子邮箱: lw2007@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2010-03-01
发表刊物: EXPERT SYSTEMS WITH APPLICATIONS
收录刊物: SCIE、EI
卷号: 37
期号: 2
页面范围: 1250-1255
ISSN号: 0957-4174
关键字: Forecasting; Grey correlation analysis; Adaptive neuro-fuzzy system; Hydraulic valve
摘要: Accurate prediction is crucial for the synthesis characteristics of the hydraulic valve in industrial production. A prediction method (G-ANFIS for short) based on grey correlation and adaptive neuro-fuzzy system (ANFIS) to forecast synthesis characteristics of hydraulic valve is devised and the utilizing of the method can help enterprises to decrease the repair rate and reject rate of the product. Grey correlation model is used first to get the main geometric elements affecting the synthesis characteristics of the hydraulic valve and thus simplifies the system forecasting model. Then use ANFIS to build a prediction model based on the above mentioned main geometric elements To illustrate the applicability and capability of the devised prediction method, a specific hydraulic valve production was used as a case study. The results demonstrate that the prediction method was applied successfully and could provide high accuracy. The method performed better than artificial neural networks (ANN) to forecast the synthesis characteristics of hydraulic valve. (C) 2009 Elsevier Ltd All rights reserved.