![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:软件学院、大连理工大学-立命馆大学国际信息与软件学院院长、党委副书记
性别:男
毕业院校:西安交通大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算数学
电子邮箱:xin.fan@dlut.edu.cn
Unsupervised detail-preserving network for high quality monocular depth estimation
点击次数:
论文类型:期刊论文
发表时间:2020-09-03
发表刊物:NEUROCOMPUTING
收录刊物:SCIE
卷号:404
页面范围:1-13
ISSN号:0925-2312
关键字:Unsupervised network; Monocular; Depth estimation; Rectangle convolution; Learned composite proximal operator
摘要:In this paper, we propose an unsupervised learning framework to address the problems of the inaccurate inference of depth details and the loss of spatial information for monocular depth estimation. First, as an unsupervised technique, the proposed framework takes easily collected stereo image pairs instead of ground truth depth data as inputs for training. Second, we design a rectangle convolution to capture global dependencies between neighboring pixels across entire rows or columns in an image, which can bring significant promotion on depth details inference. Third, we propose a learned depth refinement module including a color-guided refinement layer and a learned composite proximal operator to preserve depth discontinuities and obtain high quality depth map. The proposed network is fully differentiable and end-to-end trainable. Extensive experiments evaluated on KITTI, Cityscapes and Make3D dataset demonstrate our state-of-the-art performance and good cross-dataset generalization ability. (C) 2020 Elsevier B.V. All rights reserved.