樊鑫

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:软件学院、大连理工大学-立命馆大学国际信息与软件学院院长、党委副书记

性别:男

毕业院校:西安交通大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算数学

电子邮箱:xin.fan@dlut.edu.cn

扫描关注

论文成果

当前位置: 樊鑫的主页 >> 科学研究 >> 论文成果

COUPLING PRINCIPLED REFINEMENT WITH BI-DIRECTIONAL DEEP ESTIMATION FOR ROBUST DEFORMABLE 3D MEDICAL IMAGE REGISTRATION

点击次数:

论文类型:会议论文

发表时间:2021-02-02

页面范围:86-90

关键字:Medical image registration; optimization; deep learning; 3D neural network

摘要:Deformable 3D medical image registration is challenging due to the complicated transformations between image pairs. Traditional approaches estimate deformation fields by optimizing a task-guided energy embedded with physical priors, achieving high accuracy while suffering from expensive computational loads for the iterative optimization. Recently, deep networks, encoding the information underlying data examples, render fast predictions but severely dependent on training data and have limited flexibility. In this study, we develop a paradigm integrating the principled prior into a bidirectional deep estimation process. Inheriting from the merits of both domain knowledge and deep representation, our approach achieves a more efficient and stable estimation of deformation fields than the state-of-the-art, especially when the testing pairs exhibit great variations with the training.