• 其他栏目

    于洪涛

    • 教授     博士生导师 硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境工程
    • 办公地点:环境楼B303
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H-2 evolution

    点击次数:

      发布时间:2019-03-11

      论文类型:期刊论文

      发表时间:2017-12-31

      发表刊物:APPLIED SURFACE SCIENCE

      收录刊物:EI、SCIE

      卷号:426

      页面范围:177-184

      ISSN号:0169-4332

      关键字:Porous TiO2; MoS(2 )nanosheets; Confined growth; Active edge sites; H-2 evolution

      摘要:Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H-2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS(2 )nanosheets. As a result, the thickness of the prepared MoS(2 )nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H-2 evolution rate of 897.5 1 mu mol h(-1) g(-1), which is nearly twice as much as free-stand MoS(2 )nanosheets and twenty times more than physical mixture of MoS(2 )with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO(2 )are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER. (C) 2017 Elsevier B.V. All rights reserved.