• 其他栏目

    于洪涛

    • 教授     博士生导师 硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境工程
    • 办公地点:环境楼B303
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Heterogeneous activation of peroxymonosulfate by LaCo1-xCuxO3 perovskites for degradation of organic pollutants.

    点击次数:

      发布时间:2019-03-12

      论文类型:期刊论文

      发表时间:2018-01-01

      发表刊物:Journal of hazardous materials

      收录刊物:SCIE、PubMed

      卷号:353

      页面范围:401-409

      ISSN号:1873-3336

      关键字:Heterogeneous catalysis; Peroxymonosulfate; Perovskite; Organic pollutants

      摘要:Recently cobalt-based heterogeneous catalysts have been widely investigated for peroxymonosulfate (PMS) activation in sulfate radical-based advanced oxidation processes. However, the improvement of the catalytic performance for PMS activation remains to be a challenge. As the limiting step, the rapid transformation of CoII/CoIII redox pairs is crucial for PMS activation. Perovskites attract increasing attention due to their controllable oxidation state of B-site metal and formation of oxygen vacancies, which accelerates the cycle of redox pairs. LaCo1-xMxO3 (M = Cu, Fe and Mn) perovskites as heterogeneous catalysts of PMS were synthesized for the degradation of phenol. The results showed that LaCo0.4Cu0.6O3 exhibited the highest catalytic activity. The pseudo first-order kinetic constant of phenol degradation on LaCo0.4Cu0.6O3 is 0.302 min-1, being about 5 times as high as Co2+ with same molar concentration of cobalt in LaCo0.4Cu0.6O3. XPS analysis confirmed that substitution of copper could promote the cycle of CoII/CoIII, thus enhance the catalytic efficiency for PMS activation. The facilitated cycle of CoII/CoIII played a crucial role in the generation of sulfate radicals, hydroxyl radicals and singlet oxygen. And sulfate radical was the primary radical responsible for pollutants degradation. The results provide insights into constructing novel perovskite catalysts for the removal of organic pollutants in water. Copyright © 2018 Elsevier B.V. All rights reserved.