周震寰

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:力学与航空航天学院

学科:固体力学. 工程力学. 计算力学

办公地点:海宇楼506

联系方式:Email:zhouzh@dlut.edu.cn

电子邮箱:zhouzh@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hamiltonian analysis of a magnetoelectroelastic notch in a mode III singularity

点击次数:

论文类型:期刊论文

发表时间:2013-09-01

发表刊物:ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems

收录刊物:SCIE、EI、CPCI-S、Scopus

卷号:22

期号:9

ISSN号:0964-1726

摘要:The stress intensity factor (SIF) of a multi-material magnetoelectroelastic wedge in anti-plane deformation is analytically determined by the symplectic method. The Lagrangian equations in configuration variables alone are transformed to Hamiltonian equations in dual variables (configuration and momentum) which allow the use of the method of separation of variables. The solutions of the Hamiltonian equations can be expanded analytically in terms of the symplectic eigenfunctions with coefficients to be determined by the boundary conditions. For the wedge problem, the pairs of anti-plane displacements and shear stresses, electric fields and electric displacements, and magnetic fields and magnetic inductions are proved to be the dual (momentum) variables of the configuration variables. The singularity orders depend directly on the first few eigenvalues whose real parts are less than one but greater than zero. Numerical results for various conditions show the variations of the singularity orders. In particular, special behaviors of the order of the singularity for some special wedge angles are noted.