location: Current position: Home >> Scientific Research >> Paper Publications

Soft-Segmentation Guided Object Motion Deblurring

Hits:

Indexed by:Symposium

Date of Publication:2016-06-26

Included Journals:EI、CPCI-S

Volume:2016-December

Page Number:459-468

Abstract:Object motion blur is a challenging problem as the foreground and the background in the scenes undergo different types of image degradation due to movements in various directions and speed. Most object motion deblurring methods address this problem by segmenting blurred images into regions where different kernels are estimated and applied for restoration. Segmentation on blurred images is difficult due to ambiguous pixels between regions, but it plays an important role for object motion deblurring. To address these problems, we propose a novel model for object motion deblurring. The proposed model is developed based on a maximum a posterior formulation in which soft-segmentation is incorporated for object layer estimation. We propose an efficient algorithm to jointly estimate object segmentation and camera motion where each layer can be deblurred well under the guidance of the soft-segmentation. Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art object motion deblurring methods on challenging scenarios.

Pre One:Robust Kernel Estimation with Outliers Handling for Image Deblurring

Next One:A Generalized Nonlocal Mean Framework with Object-level Cues for Saliency Detection