个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:创新园大厦(海山楼)B1313
联系方式:84708351-8093
电子邮箱:zxsu@dlut.edu.cn
Bayesian rank penalization
点击次数:
论文类型:期刊论文
发表时间:2019-08-01
发表刊物:NEURAL NETWORKS
收录刊物:SCIE、PubMed、EI
卷号:116
页面范围:246-256
ISSN号:0893-6080
关键字:Bayesian model; Generalized double Pareto; LRR; Low-rank; RPCA
摘要:Rank minimization is a key component of many computer vision and machine learning methods, including robust principal component analysis (RPCA) and low-rank representations (LRR). However, usual methods rely on optimization to produce a point estimate without characterizing uncertainty in this estimate, and also face difficulties in tuning parameter choice. Both of these limitations are potentially overcome with Bayesian methods, but there is currently a lack of general purpose Bayesian approaches for rank penalization. We address this gap using a positive generalized double Pareto prior, illustrating the approach in RPCA and LRR. Posterior computation relies on hybrid Gibbs sampling and geodesic Monte Carlo algorithms. We assess performance in simulation examples, and benchmark data sets. (C) 2019 Elsevier Ltd. All rights reserved.