苏志勋

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园大厦(海山楼)B1313

联系方式:84708351-8093

电子邮箱:zxsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Bayesian rank penalization

点击次数:

论文类型:期刊论文

发表时间:2019-08-01

发表刊物:NEURAL NETWORKS

收录刊物:SCIE、PubMed、EI

卷号:116

页面范围:246-256

ISSN号:0893-6080

关键字:Bayesian model; Generalized double Pareto; LRR; Low-rank; RPCA

摘要:Rank minimization is a key component of many computer vision and machine learning methods, including robust principal component analysis (RPCA) and low-rank representations (LRR). However, usual methods rely on optimization to produce a point estimate without characterizing uncertainty in this estimate, and also face difficulties in tuning parameter choice. Both of these limitations are potentially overcome with Bayesian methods, but there is currently a lack of general purpose Bayesian approaches for rank penalization. We address this gap using a positive generalized double Pareto prior, illustrating the approach in RPCA and LRR. Posterior computation relies on hybrid Gibbs sampling and geodesic Monte Carlo algorithms. We assess performance in simulation examples, and benchmark data sets. (C) 2019 Elsevier Ltd. All rights reserved.