苏志勋

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园大厦(海山楼)B1313

联系方式:84708351-8093

电子邮箱:zxsu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Learning a multi-level guided residual network for single image deraining

点击次数:

论文类型:期刊论文

发表时间:2019-10-01

发表刊物:SIGNAL PROCESSING-IMAGE COMMUNICATION

收录刊物:EI、SCIE

卷号:78

页面范围:206-215

ISSN号:0923-5965

关键字:Deraining; Convolutional neural network; Fusion connections; Multi-level; Guided learning

摘要:Rainy images severely degrade visibility and make many computer vision algorithms invalid. Hence, it is necessary to remove rain streaks from a single image. In this paper, we propose a novel end-to-end deep learning based deraining method. Previous methods neglect the correlation between different layers with different receptive fields that loss a lot of important information. To better solve the problem, we develop a multi-level guided residual block that is the basic unit of our network. In this block, we utilize multi-level dilation convolutions to obtain different receptive fields and the layer with smaller receptive fields to guide the learning of larger receptive fields. Moreover, in order to reduce the model sizes, the parameters are shared among all multi-level guided residual blocks. Experiments illustrate that guided learning improves the deraining performance and the shared parameters strategy is also feasible. Quantitative and qualitative experimental results demonstrate the superiority of the proposed method compared with several state-of-the-art deraining methods.