location: Current position: Home >> Scientific Research >> Paper Publications

Experimental research on the influence of system parameters on the composition shift for zeotropic mixture (isobutane/pentane) in a system occurring phase change

Hits:

Indexed by:期刊论文

Date of Publication:2021-02-01

Journal:ENERGY CONVERSION AND MANAGEMENT

Volume:113

Page Number:1-15

ISSN No.:0196-8904

Key Words:Zeotropic mixture; Composition shift; Circulating composition; R600a and R601

Abstract:Zeotropic mixture can improve the performance of the thermodynamic cycle ascribed to the better temperature match during the heat transfer process with the characteristics of temperature glide during evaporation and condensing processes. Another characteristic of zeotropic mixture is composition shift. Composition shift means that the circulating composition and charge composition is different and is mainly caused by the two-phase hold-up and different solubility in lubricating oil. The existence of composition shift will affect the design and operation of thermodynamic system. The previous study gave little information about the influence of system parameters on the composition shift in a system occurring phase change. This paper mainly discuss the influence of system parameters on the composition shift for zeotropic mixture in a system occurring phase change as well as the validation of the linear relationship between the circulating composition and the charge composition and the inverse proportion relationship between the circulating composition and the charge mass found based on our previous theory study (Zhao and Bao, 2014). With isobutane and pentane as the research object, the impact of the key system parameters (hot water temperature, mass flow rate of hot water, feed pump frequency, cold water temperature and evaporator length) on composition shift are experimentally carried out. The results show that when the hot water temperature, mass flow rate of hot water and evaporator length increase and cold water temperature decreases, circulating composition will increase. For feed pump frequency, when the outlet of evaporator is in two phase region, and circulating composition will decreased with the increase of feed pump frequency; while the outlet of evaporator is in a state of overheating, circulating composition will increase as the feed pump frequency rises. The linear relationship between the circulating composition and the charge composition and the inverse proportion relationship between the circulating composition and the charge mass are verified by the experiment. (C) 2016 Elsevier Ltd. All rights reserved.

Pre One:Co3O4-based catalysts derived from natural wood with hierarchical structure for elemental mercury oxidation

Next One:Promoting Effect of the Core-Shell Structure of MnO2@TiO2 Nanorods on SO2 Resistance in Hg-0 Removal Process