Indexed by:期刊论文
Date of Publication:2021-03-04
Journal:ENERGY CONVERSION AND MANAGEMENT
Volume:171
Page Number:683-698
ISSN No.:0196-8904
Key Words:Reactivity controlled compression ignition (RCCI); Variable valve timing (VVT); Wide load range; Fuel consumption; Euro 6 emission regulations
Abstract:As an effective strategy to control the combustion of advanced combustion modes, the application of variable valve timing (VVT) in reactivity controlled compression ignition (RCCI) combustion was investigated in this study. By coupling KIVA-3V code with genetic algorithm, the combustion of a heavy-duty engine with RCCI combustion combined with VVT strategy was optimized under a wide load range. At each load, six operating parameters including premix ratio (PR), intake valve closing (IVC) timing, start of injection, exhaust gas re-circulation rate, intake pressure, and intake temperature were optimized to realize low-emission and high-efficiency combustion. The optimization results indicate that, at low load, high PR coupled with either late IVC or base IVC can be utilized for the realization of high thermal efficiency. At mid load, the base IVC strategy is integrated with high PR, while the late IVC strategy is coupled with low PR. At high load, only the strategy with late IVC and low PR can be used. The strategy with higher PR and earlier IVC timing exhibits better engine performance on thermal efficiency and soot emissions, while the strategy with lower premix ratio and later IVC timing is superior in ringing intensity. By optimizing the RCCI combustion with the VVT strategy, the Euro 6 NOx limit can be met while maintaining ultra-low soot emissions at low and mid load. However, at least one after-treatment device is required to further eliminate the NOx or soot emissions at high load. Under the whole load conditions, satisfactory fuel consumption can be obtained.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Power Engineering and Engineering Thermophysics
Business Address:能源与动力学院809
Contact Information:15140422034
Open time:..
The Last Update Time:..