• 更多栏目

    张文珠

    • 教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:中科院兰州化物所
    • 学位:博士
    • 所在单位:化学学院
    • 学科:分析化学
    • 联系方式:wzhzhang@dlut.edu.cn
    • 电子邮箱:wzhzhang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    点击次数:

    论文类型:期刊论文

    发表时间:2013-12-01

    发表刊物:APPLIED SURFACE SCIENCE

    收录刊物:SCIE、EI、Scopus

    卷号:286

    页面范围:319-327

    ISSN号:0169-4332

    关键字:Magnesium alloy; Electroless Ni-P/SiC; Gradient coating; Corrosion resistance; Deposition reaction kinetics

    摘要:In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings. (C) 2013 Elsevier B.V. All rights reserved.