• 更多栏目

    张文珠

    • 教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:中科院兰州化物所
    • 学位:博士
    • 所在单位:化学学院
    • 学科:分析化学
    • 联系方式:wzhzhang@dlut.edu.cn
    • 电子邮箱:wzhzhang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    A ruthenium(II) complex based turn-on electrochemiluminescence probe for the detection of nitric oxide

    点击次数:

    论文类型:期刊论文

    发表时间:2011-05-07

    发表刊物:ANALYST

    收录刊物:Scopus、SCIE、PubMed

    卷号:136

    期号:9

    页面范围:1867-1872

    ISSN号:0003-2654

    摘要:Electrochemiluminescence (ECL) detection technique using bipyridine-ruthenium(II) complexes as probes is a highly sensitive and widely used method for the detection of various biological and bioactive molecules. In this work, the spectral, electrochemical and ECL properties of a chemically modified bipyridine-ruthenium(II) complex, [Ru(bpy)(2)(dabpy)](2+) (bpy: 2,2'-bipyridine; dabpy: 4-(3,4-diaminophenoxy)-2,2'-bipyridine), were investigated and compared with those of its nitric oxide (NO)-reaction derivative [Ru(bpy)(2)(T-bpy)](2+) (T-bpy: 4-triazolephenoxy-2,2'-bipyridine) and [Ru(bpy)(3)](2+). It was found that the ECL intensity of [Ru(bpy)(2)(dabpy)](2+) could be selectively and sensitively enhanced by NO due to the formation of [Ru(bpy)(2)(T-bpy)](2+) in the presence of tri-n-propylamine. By using [Ru(bpy)(2)(dabpy)](2+) as a probe, a sensitive and selective ECL method with a wide linear range (0.55 to 220.0 mu M) and a low detection limit (0.28 mu M) was established for the detection of NO in aqueous solutions and living cells. The results demonstrated the utility and advantages of the new ECL probe for the detection of NO in complicated biological samples.