个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:党委常委、副校长
其他任职:副校长、党委常委
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:建设工程学院
学科:水文学及水资源. 人工智能. 计算机应用技术. 软件工程
办公地点:综合实验4号楼 411室
联系方式:0411-84708900
电子邮箱:czhang@dlut.edu.cn
Spatio-Temporal Analysis of Drought Indicated by SPEI over Northeastern China
点击次数:
论文类型:期刊论文
发表时间:2019-05-01
发表刊物:WATER
收录刊物:SCIE、EI
卷号:11
期号:5
关键字:climate change; DEOF; TFPW-MK; spatial patterns; SPEI; temporal variation; trends
摘要:Drought is a natural extreme climate event which occurs in most parts of the world. Northeastern China is one of the major agricultural production areas in China and also a typical vulnerable climate zone. To understand the spatio-temporal characteristics of drought over northeastern China, we first assessed the trends of precipitation and temperature. Drought events were then characterized by Standardized Precipitation Evapotranspiration Index over various temporal scales. The Trend Free Prewhitening Mann-Kendall test and distinct empirical orthogonal function, were used to investigate the trends and spatio-temporal patterns of droughts. The results indicate precipitation increasing trends are mostly detected in Heilongjiang and Jinling provinces, however, the majority of the trends are insignificant. Temperature increasing trends are detected over the entire northeastern China and most of them are significant. Decreasing drought trends are observed in Heilongjiang province and some bordering area in Jilin province, whereas increasing trends are noticed in Liaoning province and some bordering area in Jilin province. Two main sub-regions of drought variabilitythe Liaohe River Plain and the Second Songhua River basin (LS region), and the Songnen Plain and the Lesser Hinggan Mountains (SL region) are identified, and the detected droughts for the two sub-regions correspond well with recorded drought loss. The results will be beneficial for regional water resource management and planning, agriculture production, and ecosystem protection in northeastern China.