个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:党委常委、副校长
其他任职:副校长、党委常委
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:建设工程学院
学科:水文学及水资源. 人工智能. 计算机应用技术. 软件工程
办公地点:综合实验4号楼 411室
联系方式:0411-84708900
电子邮箱:czhang@dlut.edu.cn
Impact of robustness of hydrological model parameters on flood prediction uncertainty
点击次数:
论文类型:期刊论文
发表时间:2019-10-01
发表刊物:JOURNAL OF FLOOD RISK MANAGEMENT
收录刊物:SCIE
卷号:12
ISSN号:1753-318X
关键字:flash flood; hydrological modelling; robustness; TOPMODEL; uncertainty analysis
摘要:The robustness of hydrological model parameter values in flood predictions is a known area of concern, but there is a lack of a comprehensive approach to the handling of model parameter robustness, model simulation uncertainty and multiobjective model calibration when calibrating multiple flood data sets. For investigation of the impact of robustness of hydrological model parameters on flood simulation uncertainty, this paper develops a Minimax-Regret robust multiobjective optimisation framework for robust hydrological model parameter calibration and uncertainty analysis. The robustness is considered as an objective function in this study instead of a constraint as in previous research. A physically based semi-distributed hydrological model is employed to illustrate the proposed framework in a midscale catchment. Results show that the proposed framework can effectively explore robust hydrological model parameter values and quantify flood simulation uncertainty. A trade-off between robustness and Nash-Sutcliffe efficiency is found, implying that the better the Nash-Sutcliffe efficiency, the less robust the non-dominated parameter values and that improving robustness alone cannot guarantee narrower uncertainty intervals and greater containing ratios. These results reveal that robustness should not be used alone to select behavioural parameter sets, and a balance has to be made between robustness and Nash-Sutcliffe efficiency.