个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 副校长、党委常委
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:建设工程学院
学科:水文学及水资源. 人工智能. 计算机应用技术. 软件工程
办公地点:综合实验4号楼 411室
联系方式:0411-84708900
电子邮箱:czhang@dlut.edu.cn
Diurnal temperature range variation and its causes in a semiarid region from 1957 to 2006
点击次数:
论文类型:期刊论文
发表时间:2014-02-01
发表刊物:INTERNATIONAL JOURNAL OF CLIMATOLOGY
收录刊物:SCIE、EI、Scopus
卷号:34
期号:2
页面范围:343-354
ISSN号:0899-8418
摘要:ABSTRACT: The diurnal temperature range (DTR) is an important indicator of climate change, and it has decreased worldwide since the 1950s, particularly over arid and semiarid regions. This study analyses the effect of meteorological and anthropogenic factors on DTR variation to investigate the possible causes of DTR decreases in semiarid climates. The study region is located in northeast China, and the study period is from 1957 to 2006. There are three main results. First, the rate of decrease in the DTR is -1.24K per 50years. This decrease is mainly attributed to the increasing daily minimum temperature rate (Tmin, 2.24K per 50years), which is greater than the change in the daily maximum temperature (Tmax, 1.00K per 50years). Second, sunshine duration (SD) appears to be the most significant meteorological factor that determines the DTR through downward shortwave radiation (Rsw,d) and surface soil moisture (SM). The effect of Rsw,d is larger for Tmax than for Tmin; therefore, the decrease in Rsw,d results in a smaller increase in Tmax than in Tmin. On the other hand, the increase in SM can strengthen daytime latent heat release, and the increase in Tmax is then slowed because of the cooling effect of evaporation. The precipitation values and the leaf area index show a negative correlation with the DTR, whereas the cloud amount and the relative humidity appear not to be main causes of the DTR decrease in this region. Finally, atmospheric aerosols can reduce the SD by 0.27hyear-1 by decreasing atmospheric transparency, as indicated by an analysis of the Total Ozone Mapping Spectrometer Aerosol Index from 1979 to 2005. The decrease in direct solar radiation is the main cause of decreases in Rsw,d. These findings will provide references for DTR variation studies in similar climates. © 2013 Royal Meteorological Society.