教授 博士生导师 硕士生导师
性别: 男
出生日期: 1955-05-06
毕业院校: 江苏工学院
学位: 学士
所在单位: 力学与航空航天学院
学科: 流体力学. 计算力学. 航空航天力学与工程. 飞行器设计
办公地点: 大连理工大学综合实验一号楼415室
联系方式: cjwudut@dlut.edu.cn或cj_wu@163.com
电子邮箱: cjwudut@dlut.edu.cn
学术主页: : http://202.118.74.190/~cjwu/
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2015-12-01
发表刊物: SCIENCE CHINA-TECHNOLOGICAL SCIENCES
收录刊物: SCIE、EI、Scopus
卷号: 58
期号: 12
页面范围: 2110-2121
ISSN号: 1674-7321
关键字: separation behavior; flow-structure interactions; shock waves
摘要: A computational investigation of the unsteady separation behavior of rigid bodies in Mach-4 flow is carried out. Two rigid bodies, a sphere and a cube, initially stationary, centroid axially aligned, are released and thereafter fly freely according to the aerodynamic forces experienced. During the separation process, the smaller cube can experience different types of movement and our principal interest here is the non-dimensional transverse velocity of it. The separation behavior is investigated for interactions between a sphere and a cube with different mass ratio and a constant initial distance between them. The qualitative separation behavior and the final transverse velocity of the small body are found to vary strongly with the mass ratio but less sensitive to the initial distance between the two bodies. At a critical mass ratio for a given distance, the smaller body transit from entrainment within the flow region bounded by the larger body's shock to expulsion and the accumulated transverse velocity of the small body is close to maximum. This phenomenon is the so-called 'shock-wave surfing' phenomenon noted by Laurence & Deiterding for two spheres at hypersonic Mach numbers. Then we investigate the separation behavior of a sphere interaction with a rotary cube and with a non-rotary cube for a given mass ratio and different distance between them. The rotary is found to increase the likelihood of 'surfing'. Only at a certain initial distance for a given mass ratio the rotary effect of cube can be neglectable.