个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:人力资源处处长(党委教师工作部部长、党委人才办公室主任)【兼党委组织部副部长】
性别:男
毕业院校:上海交通大学
学位:博士
所在单位:生物医学工程学院
学科:生物医学工程. 信号与信息处理. 模式识别与智能系统
电子邮箱:cong@dlut.edu.cn
Extracting multi-mode ERP features using fifth-order nonnegative tensor decomposition
点击次数:
论文类型:期刊论文
发表时间:2018-10-01
发表刊物:JOURNAL OF NEUROSCIENCE METHODS
收录刊物:PubMed、SCIE
卷号:308
页面范围:240-247
ISSN号:0165-0270
关键字:Nonnegative tensor decomposition; CANDECOMP/PARAFAC; Event-related potential; Multi-mode features; Component number selection
摘要:Background: Preprocessed Event-related potential (ERP) data are usually organized in multi-way tensor, in which tensor decomposition serves as a powerful tool for data processing. Due to the limitation of computation burden for multi-way data and the low algorithm performance of stability and efficiency, multi-way ERP data are conventionally reorganized into low-order tensor or matrix before further analysis. However, the reorganization may hamper mode specification and spoil the interaction information among different modes.
New method: In this study, we applied a fifth-order tensor decomposition to a set of fifth-order ERP data collected by exerting proprioceptive stimulus on left and right hand. One of the latest nonnegative CANDECOMP/PARAFAC (NCP) decomposition methods implemented by alternating proximal gradient (APG) was employed. We also proposed an improved DIFFIT method to select the optimal component number for the fifth-order tensor decomposition.
Results: By the fifth-order NCP model with a proper component number, the ERP data were fully decomposed into spatial, spectral, temporal, subject and condition factors in each component. The results showed more pairs of components with symmetric activation region in left and right hemisphere elicited by contralateral stimuli on hand.
Comparison with existing method(s): In our experiment, more interesting components and coherent brain activities were extracted, compared with previous studies.
Conclusions: The discovered activities elicited by proprioceptive stimulus are in line with those in relevant cognitive neuroscience studies. Our proposed method has proved to be appropriate and viable for processing high-order EEG data with well-preserved interaction information among all modes.