丛丰裕

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:人力资源处处长(党委教师工作部部长、党委人才办公室主任)【兼党委组织部副部长】

性别:男

毕业院校:上海交通大学

学位:博士

所在单位:生物医学工程学院

学科:生物医学工程. 信号与信息处理. 模式识别与智能系统

电子邮箱:cong@dlut.edu.cn

扫描关注

论文成果

当前位置: 丛丰裕主页 >> 科学研究 >> 论文成果

Automatic Zebrafish Egg Phenotype Recognition from Bright-Field Microscopic Images Using Deep Convolutional Neural Network

点击次数:

论文类型:期刊论文

发表时间:2019-08-01

发表刊物:APPLIED SCIENCES-BASEL

收录刊物:SCIE

卷号:9

期号:16

关键字:zebrafish egg; microscopy image processing; convolutional neural network

摘要:Featured Application
   Automatic analysis of high throughput zebrafish egg microscopic images.
   Abstract Zebrafish eggs are widely used in biological experiments to study the environmental and genetic influence on embryo development. Due to the high throughput of microscopic imaging, automated analysis of zebrafish egg microscopic images is highly demanded. However, machine learning algorithms for zebrafish egg image analysis suffer from the problems of small imbalanced training dataset and subtle inter-class differences. In this study, we developed an automated zebrafish egg microscopic image analysis algorithm based on deep convolutional neural network (CNN). To tackle the problem of insufficient training data, the strategies of transfer learning and data augmentation were used. We also adopted the global averaged pooling technique to overcome the subtle phenotype differences between the fertilized and unfertilized eggs. Experimental results of a five-fold cross-validation test showed that the proposed method yielded a mean classification accuracy of 95.0% and a maximum accuracy of 98.8%. The network also demonstrated higher classification accuracy and better convergence performance than conventional CNN methods. This study extends the deep learning technique to zebrafish egg phenotype classification and paves the way for automatic bright-field microscopic image analysis.