丛丰裕

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:人力资源处处长(党委教师工作部部长、党委人才办公室主任)【兼党委组织部副部长】

性别:男

毕业院校:上海交通大学

学位:博士

所在单位:生物医学工程学院

学科:生物医学工程. 信号与信息处理. 模式识别与智能系统

电子邮箱:cong@dlut.edu.cn

扫描关注

论文成果

当前位置: 丛丰裕主页 >> 科学研究 >> 论文成果

FAST IMPLEMENTATION OF DOUBLE-COUPLED NONNEGATIVE CANONICAL POLYADIC DECOMPOSITION

点击次数:

论文类型:会议论文

发表时间:2019-01-01

收录刊物:EI、CPCI-S

卷号:2019-May

页面范围:8588-8592

关键字:Tensor decomposition; coupled tensor decomposition; Hierarchical Alternating Least Squares (HALS); linked CP tensor decomposition (LCPTD)

摘要:Real-world data exhibiting high order/dimensionality and various couplings are linked to each other since they share some common characteristics. Coupled tensor decomposition has become a popular technique for group analysis in recent years, especially for simultaneous analysis of multi-block tensor data with common information. To address the multiblock tensor data, we propose a fast double-coupled non-negative Canonical Polyadic Decomposition (FDC-NCPD) algorithm in this study, based on the linked CP tensor decomposition (LCPTD) model and fast Hierarchical Alternating Least Squares (Fast-HALS) algorithm. The proposed FDC-NCPD algorithm enables simultaneous extraction of common components, individual components and core tensors from tensor blocks. Moreover, time consumption is greatly reduced without compromising the decomposition quality when handling large-scale tensor blocks. Simulation experiments of synthetic and real-world data are conducted to demonstrate the superior performance of the proposed algorithm.