个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:人力资源处处长(党委教师工作部部长、党委人才办公室主任)【兼党委组织部副部长】
性别:男
毕业院校:上海交通大学
学位:博士
所在单位:生物医学工程学院
学科:生物医学工程. 信号与信息处理. 模式识别与智能系统
电子邮箱:cong@dlut.edu.cn
Objective Extraction of Evoked Event-Related Oscillation from Time-Frequency Representation of Event-Related Potentials
点击次数:
论文类型:期刊论文
发表时间:2021-03-05
发表刊物:NEURAL PLASTICITY
卷号:2020
ISSN号:2090-5904
摘要:Evoked event-related oscillations (EROs) have been widely used to explore the mechanisms of brain activities for both normal people and neuropsychiatric disease patients. In most previous studies, the calculation of the regions of evoked EROs of interest is commonly based on a predefined time window and a frequency range given by the experimenter, which tends to be subjective. Additionally, evoked EROs sometimes cannot be fully extracted using the conventional time-frequency analysis (TFA) because they may be overlapped with each other or with artifacts in time, frequency, and space domains. To further investigate the related neuronal processes, a novel approach was proposed including three steps: (1) extract the temporal and spatial components of interest simultaneously by temporal principal component analysis (PCA) and Promax rotation and project them to the electrode fields for correcting their variance and polarity indeterminacies, (2) calculate the time-frequency representations (TFRs) of the back-projected components, and (3) compute the regions of evoked EROs of interest on TFRs objectively using the edge detection algorithm. We performed this novel approach, conventional TFA, and TFA-PCA to analyse both the synthetic datasets with different levels of SNR and an actual ERP dataset in a two-factor paradigm of waiting time (short/long) and feedback (loss/gain) separately. Synthetic datasets results indicated that N2-theta and P3-delta oscillations can be stably detected from different SNR-simulated datasets using the proposed approach, but, by comparison, only one oscillation was obtained via the last two approaches. Furthermore, regarding the actual dataset, the statistical results for the proposed approach revealed that P3-delta was sensitive to the waiting time but not for that of the other approaches. This study manifested that the proposed approach could objectively extract evoked EROs of interest, which allows a better understanding of the modulations of the oscillatory responses.