张超 (教授)

教授   博士生导师   硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园#A1024

联系方式:0411-84708351

电子邮箱:chao.zhang@dlut.edu.cn

Convergence of BP algorithm for product unit neural networks with exponential weights

点击次数:

论文类型:期刊论文

发表时间:2008-12-01

发表刊物:NEUROCOMPUTING

收录刊物:SCIE、EI、Scopus

卷号:72

期号:1-3

页面范围:513-520

ISSN号:0925-2312

关键字:Neural network; Product unit; Exponential weights; Back-propagation algorithm; Convergence

摘要:Product unit neural networks with exponential weights (PUNNs) can provide more powerful internal representation capability than traditional feed-forward neural networks. In this paper, a convergence result of the back-propagation (BP) algorithm for training PUNNs is presented. The monotonicity of the error function in the training iteration process is also guaranteed. A numerical example is given to support the theoretical findings. (c) 2008 Elsevier B.V. All rights reserved.

发表时间:2008-12-01

上一条: Training pi-sigma network by online gradient algorithm with penalty for small weight update

下一条: A Data-Driven Framework for Tunnel Geological-Type Prediction Based on TBM Operating Data