张超 (教授)

教授   博士生导师   硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:数学科学学院

学科:计算数学

办公地点:创新园#A1024

联系方式:0411-84708351

电子邮箱:chao.zhang@dlut.edu.cn

多层感知器处理多分类问题的计算能力

点击次数:

论文类型:期刊论文

发表时间:2022-06-29

发表刊物:Numerical Mathematics A Journal of Chinese University

卷号:42

期号:3

页面范围:277-288

ISSN号:1000-081X

关键字:"Multiple linear perceptron; multi-class classification problem; one-to-one approach; binary-coding approach; accuracies"

CN号:32-1170/O1

摘要:In this paper, we consider the design of output layer nodes of multiple linear perceptron network for solving $r$-class classification problems $\left( {r \ge 3} \right)$. In general, the output layer is designed in an  one-to-one" approach. Instead, we will adopt a "binary-coding" approach to build the output layer, which contains $q$ nodes such that ${2^{q - 1}} < r \le {2^q}$ with $q \ge 2$ and outputs a binary code of the number i if an input belongs to the i-th class. In particular, for multiple linear perceptrons with four hidden nodes, we prove the following result: One-to-one approach can solve an r-class classification problem with $r \le 16$ by using r output nodes, while our binary-coding approach can solve the same problem by using $q\left( {q \le 4} \right)$ output nodes.

备注:新增回溯数据

发表时间:2022-06-29

上一条: 基于灰色关联分析的高阶神经网络剪枝算法

下一条: Designing a Shape-Performance Integrated Digital Twin Based on Multiple Models and Dynamic Data: A Boom Crane Example