• 更多栏目

    杨希川

    • 研究员     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工学院
    • 电子邮箱:yangxc@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Molecular Design and Performance of Hydroxylpyridium Sensitizers for Dye-Sensitized Solar Cells

    点击次数:

    论文类型:期刊论文

    发表时间:2013-06-12

    发表刊物:ACS APPLIED MATERIALS & INTERFACES

    收录刊物:SCIE、EI、PubMed、Scopus

    卷号:5

    期号:11

    页面范围:5227-5231

    ISSN号:1944-8244

    关键字:dye-sensitized solar cells; organic dyes; anchoring group; hydroxyl adsorption; energy conversion; photovoltaic device

    摘要:Four hydroxylpyridium organic dyes were synthesized and applied in dye-sensitized solar cells (DSSCs). Hydroxylpyridium was introduced as an electron acceptor in donor-pi-conjugated bridge-acceptor (D-pi-A) system. The traditional anchoring groups, such as the carboxyl group, were replaced by hydroxyl group. It was found that the existence of the hydroxylpyridium exhibits a large effect on the absorption spectra of dyes JH401-JH404. For JH series of dyes, hexylthiophene was employed as the pi-conjugated bridge, and triphenylamine, phenothiazine, and their derivatives were used as the electron donor. The performances of the dyes with different structure were investigated by photophysical, photovoltaic, and electrochemical methods. When applied in the DSSCs, the sensitizer JH401 yields the best efficiency, 2.6% (J(sc) = 6.35 mA/cm(2), V-oc = 605 mV, FF = 67.696) under 100 mW/cm(2) light illumination. Its maximum incident photon-to-current conversion efficiency (IPCE) is 80% at 440 nm light wavelength, which is the highest IPCE value achieved with hydroxyl group adsorbent organic dyes so far.