大连理工大学  登录  English 
杜磊
点赞:

副教授   硕士生导师

性别: 男

毕业院校: 名古屋大学

学位: 博士

所在单位: 数学科学学院

学科: 计算数学

办公地点: 数学楼606

电子邮箱: dulei@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 主页 >> 科学研究 >> 论文成果
Coupled FE-BE method for eigenvalue analysis of elastic structures submerged in an infinite fluid domain

点击次数:

论文类型: 期刊论文

发表时间: 2017-04-13

发表刊物: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

收录刊物: SCIE、EI

卷号: 110

期号: 2

页面范围: 163-185

ISSN号: 0029-5981

关键字: fluid-structure interaction; coupled FE-BE method; nonlinear eigenvalue problem; contour integral method; fictitious eigenfrequency; Burton-Miller formulation

摘要: For thin elastic structures submerged in heavy fluid, e.g., water, a strong interaction between the structural domain and the fluid domain occurs and significantly alters the eigenfrequencies. Therefore, the eigenanalysis of the fluid-structure interaction system is necessary. In this paper, a coupled finite element and boundary element (FE-BE) method is developed for the numerical eigenanalysis of the fluid-structure interaction problems. The structure is modeled by the finite element method. The compressibility of the fluid is taken into consideration, and hence the Helmholtz equation is employed as the governing equation and solved by the boundary element method (BEM). The resulting nonlinear eigenvalue problem is converted into a small linear one by applying a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenvalues of interest. The Burton-Miller formulation is applied to tackle the fictitious eigenfrequency problem of the BEM, and the optimal choice of its coupling parameter is investigated for the coupled FE-BE method. Numerical examples are given and discussed to demonstrate the effectiveness and accuracy of the developed FE-BE method. Copyright (C) 2016 John Wiley & Sons, Ltd.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学