
副教授 硕士生导师
性别: 男
毕业院校: 名古屋大学
学位: 博士
所在单位: 数学科学学院
学科: 计算数学
办公地点: 数学楼606
电子邮箱: dulei@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2017-01-01
发表刊物: NEURAL COMPUTATION
收录刊物: SCIE、EI、PubMed、Scopus
卷号: 29
期号: 1
页面范围: 247-262
ISSN号: 0899-7667
摘要: The techniques of random matrices have played an important role in many machine learning models. In this letter, we present a new method to study the tail inequalities for sums of random matrices. Different from other work (Ahlswede & Winter, 2002; Tropp, 2012; Hsu, Kakade, & Zhang, 2012), our tail results are based on the largest singular value (LSV) and independent of the matrix dimension. Since the LSV operation and the expectation are noncommutative, we introduce a diagonalization method to convert the LSV operation into the trace operation of an infinitely dimensional diagonal matrix. In this way, we obtain another version of Laplace-transform bounds and then achieve the LSV-based tail inequalities for sums of random matrices.