
副教授 硕士生导师
性别:男
毕业院校:名古屋大学
学位:博士
所在单位:数学科学学院
学科:计算数学
办公地点:数学楼606
电子邮箱:
开通时间: ..
最后更新时间:..
点击次数:
发布时间:2019-03-12
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:NEURAL COMPUTATION
收录刊物:Scopus、PubMed、EI、SCIE
卷号:29
期号:1
页面范围:247-262
ISSN号:0899-7667
摘要:The techniques of random matrices have played an important role in many machine learning models. In this letter, we present a new method to study the tail inequalities for sums of random matrices. Different from other work (Ahlswede & Winter, 2002; Tropp, 2012; Hsu, Kakade, & Zhang, 2012), our tail results are based on the largest singular value (LSV) and independent of the matrix dimension. Since the LSV operation and the expectation are noncommutative, we introduce a diagonalization method to convert the LSV operation into the trace operation of an infinitely dimensional diagonal matrix. In this way, we obtain another version of Laplace-transform bounds and then achieve the LSV-based tail inequalities for sums of random matrices.