![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:创新创业学院
办公地点:创新创业学院402室
联系方式:041184707111
电子邮箱:fenglin@dlut.edu.cn
Incorporate Extreme Learning Machine to content-based image retrieval with relevance feedback
点击次数:
论文类型:会议论文
发表时间:2014-01-01
收录刊物:CPCI-S
页面范围:1010-1013
关键字:Extreme learning machine; Relevance feedback; Content-based image retrieval; Support vector machine
摘要:This paper presents a new relevance feedback scheme, which incorporates Extreme Learning Machine (ELM) to content-based image retrieval (CBIR) with relevance feedback. Relevance feedback schemes based on Support Vector Machine (SVM) have been proposed in previous paper. However, the performance of the schemes are often poor which is caused by the low speed of SVM algorithm in high dimension data. To overcome the problem, ELM is applied to construct a classifier for relevance feedback instead of Support Vector Machine (SVM) which has been used in CBIR. Due to the faster speed and the higher accuracy of ELM algorithm, we can achieve better performance with the proposed scheme in image retrieval. Our experiments also show that it is feasible to incorporate ELM with relevance feedback for CBIR.