![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:创新创业学院
办公地点:创新创业学院402室
联系方式:041184707111
电子邮箱:fenglin@dlut.edu.cn
Local Topological Linear Discriminant analysis
点击次数:
论文类型:期刊论文
发表时间:2013-12-10
发表刊物:Journal of Information and Computational Science
收录刊物:EI、Scopus
卷号:10
期号:18
页面范围:5859-5866
ISSN号:15487741
摘要:Subspace learning has been widely applied to face recognition, data clustering and pattern analysis. It is particularly important to supervised learning methods. To deal with the problem of lacking local features in many supervised dimensionality reduction methods, we propose a new supervised dimensionality reduction method called Local Topological Linear Discriminant Analysis (LTLDA) We apply the local topological structure of within-class to the original LDA method. The experimental results show that our method is more efficient to LDA and Maximum Margin Criterion. ? 2013 Binary Information Press.