个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:创新创业学院
办公地点:创新创业学院402室
联系方式:041184707111
电子邮箱:fenglin@dlut.edu.cn
Multi-view spectral clustering via robust local subspace learning
点击次数:
论文类型:期刊论文
发表时间:2017-04-01
发表刊物:SOFT COMPUTING
收录刊物:SCIE、EI
卷号:21
期号:8
页面范围:1937-1948
ISSN号:1432-7643
关键字:Multi-view learning; Spectral clustering; Robust local subspace learning
摘要:Because of the existence of multiple sources of datasets, multi-view clustering has a wide range of applications in data mining and pattern recognition. Multi-view could utilize complementary information that existed in multiple views to improve the performance of clustering. Recently, there have been multi-view clustering methods which improved the performance of clustering to some extent. However, they do not take local representation relationship into consideration and local representation relationship is a crucial technology in subspace learning. To solve this problem, we proposed a novel multi-view clustering algorithm via robust local representation. We consider that all the views are derived from a robust unified subspace and noisy. To get the robust similarity matrix we simultaneously take all the local reconstruction relationships into consideration and use L1-norm to guarantee the sparsity. We give an iteration solution for this problem and give the proof of correctness. We compare our method with a number of classical methods on real-world and synthetic datasets to show the efficacy of the proposed algorithm.