冯林

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:创新创业学院

办公地点:创新创业学院402室

联系方式:041184707111

电子邮箱:fenglin@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Face Alignment via Multi-Regressors Collaborative Optimization

点击次数:

论文类型:期刊论文

发表时间:2019-01-01

发表刊物:IEEE ACCESS

收录刊物:SCIE、Scopus

卷号:7

页面范围:4101-4112

ISSN号:2169-3536

关键字:Face alignment; multi-regressors; cascaded shape regression

摘要:Face alignment is a fundamental step in facial image analysis. To solve the non-convex optimization problem, most cascade-based regression approaches conventionally utilize a single regressor to cover the entire optimization space. These measures are prone to average conflicting gradient directions, especially when applied to faces in the unconstrained condition with various poses and expressions. In this paper, we present an effective face alignment approach based on the multi-regressors collaborative optimization. The foundation of our method is the cascaded regression (CR) that has recently established itself as one of the most practical and effective frameworks for localizing the facial landmarks. CR is interpreted as a learning-based approach to iteratively optimize an objective function. On this basis, in all iterations, the proposed algorithm further divides the sample space into several clusters, in each of which, samples with similar gradient directions and one separate local regressor are learned. During the prediction stage, the unseen landmarks of a face image are evaluated by a linear combination of estimations from all cluster regressors with different weights. The experimental results demonstrate the advantages of our method on the general unconstrained images.