个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:创新创业学院
办公地点:创新创业学院402室
联系方式:041184707111
电子邮箱:fenglin@dlut.edu.cn
Rough extreme learning machine: A new classification method based on uncertainty measure
点击次数:
论文类型:期刊论文
发表时间:2019-01-24
发表刊物:NEUROCOMPUTING
收录刊物:SCIE、Scopus
卷号:325
页面范围:269-282
ISSN号:0925-2312
关键字:Extreme learning machine; Rough set; Attribute reduction; Classification; Neural network
摘要:Extreme learning machine (ELM) is a new single hidden layer feedback neural network. The weights of the input layer and the biases of neurons in hidden layer are randomly generated; the weights of the output layer can be analytically determined. ELM has been achieved good results for a large number of classification tasks. In this paper, a new extreme learning machine called rough extreme learning machine (RELM) was proposed. RELM uses rough set to divide data into upper approximation set and lower approximation set, and the two approximation sets are utilized to train upper approximation neurons and lower approximation neurons. In addition, an attribute reduction is executed in this algorithm to remove redundant attributes. The experimental results showed, comparing with the comparison algorithms, RELM can get a better accuracy and a simpler neural network structure on most data sets; RELM cannot only maintain the advantages of fast speed, but also effectively cope with the classification task for high-dimensional data. (C) 2018 Elsevier B.V. All rights reserved.