高飞
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2017-07-01
发表刊物:PHYSICS OF PLASMAS
收录刊物:SCIE、EI、Scopus
卷号:24
期号:7
ISSN号:1070-664X
摘要:Spatial distributions of plasma parameters have been investigated by a Langmuir probe in a hydrogen inductively coupled plasma with an expansion region. The influence of the gas pressure and the radio-frequency power on the electron energy probability function (EEPF), electron density, and electron temperature has been presented. The results indicate that the EEPF evolves from a bi-Maxwellian distribution in the discharge driver region to a Maxwellian distribution in the expansion region at low pressures, whereas it is always characterized by a Maxwellian distribution at high pressures. Moreover, the electron density exhibits a bell-shaped profile in the driver region, while the electron temperature shows a relatively uniform distribution there, and they decrease to low values in the expansion region. In order to verify the experimental results, we use the COMSOL simulation software to calculate the electron density and electron temperature at different powers at 2 Pa. The simulated and measured axial distributions of the plasma properties agree well except for the absolute value, i.e., the calculated electron temperature is higher at all the RF powers, and the calculated electron density is underestimated at 2 kW, while a better agreement is obtained at low RF power. Published by AIP Publishing.