高峻峰

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:大连理工大学白俄罗斯国立大学联合学院副院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:物理学院

学科:凝聚态物理

办公地点:中白学院252

电子邮箱:gaojf@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Electromechanical properties of zigzag-shaped carbon nanotubes

点击次数:

论文类型:期刊论文

发表时间:2013-10-28

发表刊物:PHYSICAL CHEMISTRY CHEMICAL PHYSICS

收录刊物:SCIE、PubMed、Scopus

卷号:15

期号:40

页面范围:17134-17141

ISSN号:1463-9076

摘要:Atomic structural models of zigzag-shaped carbon nanotubes (Z-CNTs) were constructed by periodically introducing pentagons and heptagons into pristine CNTs. In terms of formation energies, the Z-CNTs present comparable energetic stabilities to those of the pristine CNTs and are more stable than C-60 fullerene. The mechanical properties of these Z-CNTs, including the Young's modulus, intrinsic strength and failure behaviour, were systematically investigated by first-principles computations. Compared with the pristine CNTs with an average Young's modulus of about 1.0 TPa, incorporation of pentagons and heptagons in the Z-CNTs will reduce the average Young's modulus to several hundreds of GPa. Moreover, the computational results also showed that under uniaxial tensile strain, the intrinsic strength and failure strain of the Z-CNTs are also lower than those of the pristine CNTs. Generally, the Young's modulus and intrinsic strength of the Z-CNTs are exponentially inverse to curvature, which can be expressed by simple formulae. In particular, the electronic properties of the armchair Z-CNTs can be tailored by uniaxial tensile strain. It was also found that through applying tensile strain, a semiconductor-metal or metal-semiconductor transition can be triggered. The localized-delocalized partial charge distribution near the Fermi energy for the strained Z-CNTs can explain the semiconductor-metal or metal-semiconductor transition. This significant electromechanical coupling effect suggests the Z-CNTs have potential applications in nanoscale electromechanical sensors and switches.