高峻峰

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:大连理工大学白俄罗斯国立大学联合学院副院长

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:物理学院

学科:凝聚态物理

办公地点:中白学院252

电子邮箱:gaojf@dlut.edu.cn

扫描关注

科学研究

当前位置: 中文主页 >> 科学研究

1、纳米团簇酶、纳米团簇药物递送的机理和应用

理论先行,采用大语言模型、可解释机器学习模型等深入分析文献和预测有效纳米酶元素和配体;采用第一性原理小数据训练机器学习力场,结合CGA和CALYPSO等结构预测方法,准确预测自由纳米团簇结构;量化计算配体和团簇、表面相互作用,配体和配体相互作用,配体和药物相互作用,得到精准的结构和力的关系,采用图神经网络训练机器学习力场,模拟配体团簇的结构、稳定性。

实验研发,采用磁控、PECVD、水热反应等方法合成各种元素和尺寸的纳米团簇、微粒,进行配体替换和组装,研究其纳米酶活性,进行细菌,与兄弟研究所、医院一起研究纳米团簇/粒子灭菌特性,进一步研究纳米粒子的药物递送能力,以及核磁共振成像,荧光成像的诊疗一体能力,磁热疗、光热疗和光动力疗法能力,研发和推广无机纳米粒子在医学领域应用。

2、晶体生长智能模拟和实验合成

从密度泛函理论计算小模型,训练并建立周期表上全部非稀土元素的图神经网络机器学习力场。以机器学习力场为基础,发展MD和MC混合生长程序,模拟晶体生长中微观生长行为,预测温度、压强、杂质和催化剂对生长和结构的影响。

实验对理论进行验证和反馈,采用水热法、PECVD、磁控等方法合成晶体,通过XRD、AFM、SEM、TEM进行分析和表征,晶体精细测量与理论研究进行对比,不断优化晶体生长工艺。

3、晶体非线性光学性质模拟和测量以及激光损伤阈值

采用密度泛函理论计算材料基态结构和能带,电荷密度等。采用独立发展的程序计算材料的非线性光学SHG和BPVE等效应,预测材料在光电识别、光调制器等方面应用。采用含时密度泛涵研究材料的光损伤阈值。 实验采用飞秒脉冲连续调谐激光测量材料对不同波长的SHG响应,与理论进行对比,寻找高效SHG相应材料和机理。 实验采用飞秒脉冲高功率激光器测量材料损伤阈值,研究激光材料损伤机理,明确材料的激光安全性和激光加工行为。



代表性论文:

20. On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal–organic frameworks. Nature Synthesis , 2024,

19. Intelligent Structure Searching and Designs for Nano Clusters: Effective Units in Atomic Manufacturing. Advanced Intelligent Systems 2024. Accepted 

18. Light-Induced Variation of Lithium Coordination Environment in g-C3N4 Nanosheet for Highly Efficient Oxygen Reduction Reactions. ACS Nano (中科研1区)2024, 

17. Robust Type‐II Band Alignment and Stacking‐Controlling Second Harmonic Generation in GaN/ZnO vdW Heterostructure. Laser & Photonics Review(中科研1区)       2024, 

16. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nature Communications(中科研1区)2023,14, 1873. 

15. The effects of intercalated environmental gas molecules on the carrier dynamics in WSe2/WS2 heterostructures. Materials Horizons (影响因子:13.3 )2023,10, 2417-2426 

14. Robust Sandwiched B/TM/B Structures by Metal Intercalating into Bilayer Borophene Leading to Excellent Hydrogen Evolution Reaction. Adv. Energy Mater. (中科研1区)2023, 13(29):2301331. 

13. Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction. Adv Mater, (中科研1区)2022, 2209307 

12. Regulating *OCHO Intermediate as Rate-Determining Step of Defective Oxynitride Nanosheets Enabling Robust CO2 Electroreduction. Adv Energy Mater (中科研1区)2022, 12, 2200321. 

11. Excellent HER and OER Catalyzing Performance of Se-Vacancies in Defects-Engineered PtSe2: From Simulation to Experiment. Adv Energy Mater (中科研1区)2022, 2102359. 

10. Eliminating edge electronic and phonon states of phosphorene nanoribbon by unique edge reconstruction. Small (影响因子:13.3 )2022, 18, 2105130. 

09. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction, Angew Chem Int Ed (中科研1区)2021, 60, 27126. 

08. Universal Zigzag Edge Reconstruction of an α-Phase Puckered Monolayer and Its Resulting Robust Spatial Charge Separation. Nano Letters (中科研1区)2021, 21, 8095. 

07. 2D boron sheets: structure, growth, electronic and thermal transport properties. Adv Funct Mater(中科研1区) 2020, 30, 1904349. 

06. Surface Reconstruction, Oxidation Mechanism, and Stability of Cd3As2. Adv Funct Mater (中科研1区) 29, 2019, 29, 1900965. 

05. The Critical Role of Substrate in Stabilizing Phosphorene Nanoflake: A Theoretical Exploration. J Am Chem Soc (中科研1区)2016, 138, 4763. 

04 The Structure and Stability of Magic Carbon Clusters Observed in Graphene Chemical Vapor Deposition Growth on Ru(0001) and Rh(111) Surfaces. Angew Chem Int Ed (中科研1区) 2014, 53, 14031. 

03. Transition Metal Surface Passivation Induced Graphene Edge Reconstruction. J Am Chem Soc (中科研1区)2012 134, 6204. 

02. Magic Carbon Clusters in the Chemical Vapor Deposition Growth of Graphene. J Am Chem Soc (中科研1区) 2012, 134, 2970. 

01. Graphene Nucleation on Transition metal surface: Structure Transformation and Role of the Metal Step Edge. J Am Chem Soc (中科研1区), 2011,133, 5009.