个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:大连理工大学白俄罗斯国立大学联合学院副院长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:物理学院
学科:凝聚态物理
办公地点:中白学院252
电子邮箱:gaojf@dlut.edu.cn
Step-confined thin film growth via near-surface atom migration
点击次数:
论文类型:期刊论文
发表时间:2020-06-01
发表刊物:NANO RESEARCH
收录刊物:SCIE
卷号:13
期号:6
页面范围:1552-1557
ISSN号:1998-0124
关键字:thin film growth; tungsten carbide; near-surface dopant; low-energy electron microscopy (LEEM); step confinement
摘要:Understanding of thin film growth mechanism is crucial for tailoring film growth behaviors, which in turn determine physicochemical properties of the resulting films. Here, vapor-growth of tungsten carbide overlayers on W(110) surface is investigated by real time low energy electron microscopy. The surface growth is strongly confined by surface steps, which is in contrast with overlayer growth crossing steps in a so-called carpet-like growth mode for example in graphene growth on metal surfaces. Density functional theory calculations indicate that the step-confined growth is caused by the strong interaction of the forming carbide overlayer with the substrate blocking cross-step growth of the film. Furthermore, the tungsten carbide growth within each terrace is facilitated by the supply of carbon atoms from near-surface regions at high temperatures. These findings suggest the critical role of near-surface atom diffusion and step confinement effects in the thin film growth, which may be active in many film growth systems.