个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:化学工程. 生物医学工程. 生物化工
办公地点:大连理工大学化工学院化工实验楼D413
联系方式:139玖捌伍肆捌柒壹柒
电子邮箱:guanshui@dlut.edu.cn
Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration
点击次数:
论文类型:期刊论文
发表时间:2017-02-01
发表刊物:MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
收录刊物:SCIE、EI、PubMed
卷号:71
页面范围:308-316
ISSN号:0928-4931
关键字:Conducting polymer; Chitosan and gelatin; Porous scaffold; PC12 cells; Nerve regeneration
摘要:Conducting polymer, as a "smart" biomaterial, has been increasingly used to construct tissue engineered scaffold for nerve tissue regeneration. In this study, a novel porous conductive scaffold was prepared by incorporating conductive hyaluronic acid (HA) doped-poly(3,4-ethylenedioxythiophene) (PEDOT-HA) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physicochemical characteristics of Cs/Gel scaffold with 0-10 wt PEDOT-HA were analyzed and the results indicated that the incorporation of PEDOT-HA into scaffold increased the electrical and mechanical properties while decreasing the porosity and water absorption. Moreover, in vitro biodegradation of scaffold displayed a declining trend with the PEDOT-HA content increased. About the biocompatibility of conductive scaffold, neuron-like rat phaeochromocytoma (PC12) cells were cultured in scaffold to evaluate cell adhesion and growth. 8% PEDOT-HA/Cs/Gel scaffold had a higher cell adhesive efficiency and cell viability than the other conductive scaffolds. Furthermore, cells in the scaffold with 8 wt PEDOT-HA expressed higher synapse growth gene of GAP43 and SYP compared with Cs/Gel control group. These results suggest that 8%PEDOT-HA/Cs/Gel scaffold is an attractive cell culture conductive substrate which could support cell adhesion, survival, proliferation, and synapse growth for the application in nerve tissue regeneration. (C) 2016 Elsevier B.V. All rights reserved.