关水

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工程. 生物医学工程. 生物化工

办公地点:大连理工大学化工学院化工实验楼D413

联系方式:139玖捌伍肆捌柒壹柒

电子邮箱:guanshui@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Protocatechuic acid from Alpinia oxyphylla promotes migration of human adipose tissue-derived stromal cells in vitro

点击次数:

论文类型:期刊论文

发表时间:2008-12-03

发表刊物:EUROPEAN JOURNAL OF PHARMACOLOGY

收录刊物:SCIE、PubMed、Scopus

卷号:599

期号:1-3

页面范围:24-31

ISSN号:0014-2999

关键字:Protocatechuic acid; Adipose tissue-derived stromal cells; Migration; Membrane-type matrix metalloproteinase-1; Matrix metalloproteinase-2

摘要:Human adipose tissue-derived stromal cells (hADSCs) demonstrate promising potential in various clinical applications, including the transplantation to regenerate injured or degenerative tissues. The migration of engrafted hADSCs to the correct site of injure is essential for the curative effect of stem cell therapy. We found that protocatechuic acid (PCA) from Alpinia (A.) oxyphylla could promote the migration capacity of hADSCs through transwell coated with gelatin in vitro. PCA enhanced the cell migration rate in a dose-dependent and time-dependent manner. Meanwhile, RT-PCR and quantitative RT-PCR analysis revealed the elevation of membrane-type matrix metalloproteinase-1 (MT1-MMP) mRNA expression in 1.5 mM PCA-treated hADSCs. In the supernatants of these cells, the active matrix metalloproteinase-2 (MMP-2) increased compared with control cells with zymography. Moreover, the promotion of cell migration by PCA could be effectively and obviously inhibited by anti-MT1-MMP or anti-MMP-2 antibodies. Furthermore, flow cytometric analysis of the cell surface antigens, osteogenic induction, adipogenic induction and cardiomyocyte-like cell induction demonstrated that hADSCs retained their functional characteristics of multipotential mesenchymal progenitors after PCA treatment. These results suggest that PCA from A. oxyphylla promote the migration of hADSCs in vitro, which is partially due to the increased expression of MT1-MMP and the promotion of MMP-2 zymogen activation. (C) 2008 Elsevier B.V. All rights reserved.