个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
电子邮箱:guodm@dlut.edu.cn
Effect of surface hydroxylation on ultra-precision machining of quartz glass
点击次数:
论文类型:期刊论文
发表时间:2020-01-31
发表刊物:APPLIED SURFACE SCIENCE
收录刊物:EI、SCIE
卷号:501
ISSN号:0169-4332
关键字:Molecular dynamics; Quartz glass; CMP; Hydroxylation
摘要:Chemical mechanical polishing is a main technology to flatten the surface of quartz glass. However, the role of water in polishing slurry and the removal mechanism in the CMP process of quartz glass are still unclear. The simulation based on ReaxFF-MD method was utilized to explore the microphenomenon and the removal mechanism in the CMP process of quartz glass. The simulation results indicated that the H atoms dissociating from H2O in polishing slurry present a weakening effect on Si-O bonds in quartz glass. Besides, the hydroxylation process when the pristine surface of quartz glass reacts with -OH groups dissociating from H2O was elucidated explicitly in this simulation. To verify the correctness of this ReaxFF-MD simulation, a set of experiments including nanoindentation and nanoindentation were implemented on quartz glass modified in solutions with different concentrations of aqueous H2O2 and KOH. According to the results of experiments, surface modification of quartz glass contributes to the removal of surface materials and processability of quartz glass modified by 5% aqueous H2O2 is the best. This work combining simulations and experiments contribute to understand the chemical behavior of nanoparticles at the atomic scale and provide an effective method to choose the CMP slurry.