![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:清华大学
学位:博士
所在单位:材料科学与工程学院
学科:材料加工工程
办公地点:大连理工大学新材料大楼(知远楼)A517
联系方式:0411-84709500
电子邮箱:eyguo@dlut.edu.cn
Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying
点击次数:
论文类型:期刊论文
发表时间:2019-06-01
发表刊物:ACTA MATERIALIA
收录刊物:SCIE、EI
卷号:171
页面范围:216-230
ISSN号:1359-6454
关键字:Amorphous alloys; Dynamic mechanical analysis; Molecular dynamics; Mechanical properties; Atomic structure
摘要:A vital requirement for bulk-metallic glasses (BMGs) as structural materials is the attainment of both strength and toughness, yet invariably, as in most materials, these properties are mutually exclusive. However, by utilizing a hydrogen microalloying technology, involving alloying with a gas mixture of hydrogen/argon, we have converted "strong-yet-brittle" bulk-metallic glasses into "stronger-and-tough" ones. We combine experiments with molecular dynamics simulations to systematically analyze the atomic-scale details on how trace hydrogen additions can induce internal changes in the amorphous structure of Zr-Cu-based glassy alloys, with the aim of discerning the structural origin of the combined high strength, ductility and toughness of these materials. Our results, from both relaxation spectrum analysis and calculations of the atomic configurations, indicate that minor additions of hydrogen, instead of causing embrittlement, can have a positive influence on the mechanical properties of BMGs. Specifically, they generate more highly activated "soft spots" to promote multiple shear bands to enhance deformability, yet at the same time engender the formation of a more strengthened structural matrix to delay their initiation, a factor which can serve to elevate strength. Accordingly, our H-alloyed samples display a larger yield strength and fracture strain than the H-free ones. The current findings not only show how the strength-toughness trade-off can be successfully overcome in bulk-metallic glasses, but also we regard this understanding as a step forward to decoding the salient underlying mechanisms for the correlating structure, relaxation behavior and mechanical properties of these materials. Published by Elsevier Ltd on behalf of Acta Materialia Inc.