Ran Hai

Associate Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Gender:Male

Alma Mater:大连理工大学

Degree:Doctoral Degree

School/Department:物理学院

Discipline:Plasma physics

E-Mail:rhai@dlut.edu.cn


Paper Publications

In situ diagnosis of Li-wall conditioning and H/D co-deposition on the first wall of EAST using laser-induced breakdown spectroscopy

Hits:

Indexed by:期刊论文

Date of Publication:2018-08-01

Journal:PLASMA PHYSICS AND CONTROLLED FUSION

Included Journals:SCIE

Volume:60

Issue:8

ISSN No.:0741-3335

Key Words:LIBS; EAST; lithium-wall conditioning; H/D co-deposition; the first wall

Abstract:In this work, laser-induced breakdown spectroscopy (LIBS) approach was applied to Experimental Advanced Superconducting Tokamak (EAST) device for in situ diagnosing the lithium-wall conditioning processes and the Li-H/D co-deposition on the inner board of the first wall of EAST. The fuel of D and the co-deposition impurities, such as H, Li, Ca, Na and Mo were clearly observed on the surface of the first wall. During the processes of Li-wall conditioning, the Li signal intensity increases with the increase of the time of Li-wall conditioning, and the average deposited rate of Li was about 0.522 mu m h(-1). The study of Li-coating layer indicates that LIBS technique can be used to assess the degree of re-deposition on the first wall. The variation of H/(H + D) as a function of the days of D-discharge demonstrates that Li-wall conditioning technique can significantly reduce the H/(H + D) ratio in the vacuum vessel due to the strong H/D adsorption capability of Li and enhance long-pulse H-mode plasma operation. The results indicate that LIBS technique can be used for in situ analysis of co-deposition and D retention on the first wall of EAST.

Pre One:Internal mixing dynamics of Cu/Sn-Pb plasmas produced by femtosecond laser ablation

Next One:Study of Spark Discharge Assisted to Enhancement of Laser-Induced Breakdown Spectroscopic Detection for Metal Materials

Profile

海然,副教授,博士生导师,国家重点研发项目负责人,大连市青年科技之星。博士毕业于大连理工大学等离子体物理专业。2014年9月至2016年10月公派赴美国加州大学伯克利分校-劳伦斯伯克利国家实验室进行博士联合培养。

主要从事基于激光光谱技术托卡马克装置内壁状态原位诊断、等离子体与壁材料相互作用研究,同时,包括环境污染、工业样品中多元素成分的远程、实时、定量化激光光谱分析、有机物快速分类等研究工作。在Optics express, Journal of Analytical Atomic Spectrometry, Spectrochimica Acta Part B:Atomic Spectroscopy等国外核心杂志发表SCI论文30余篇,SCI-Q1分区封面论文3篇,已授权发明专利10项;承担国家及省部级科研项目4项,参与重大科研项目多项,是我校牵头的国家重大ITER专项的研究骨干成员。