Ran Hai
Associate Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:物理学院
Discipline:Plasma physics
E-Mail:rhai@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2018-10-01
Journal:SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Included Journals:SCIE
Volume:148
Page Number:92-98
ISSN No.:0584-8547
Abstract:Chemical imaging applications using Laser Induced Breakdown Spectroscopy (LIBS) involve laser ablation sampling at interfaces or boundaries between materials with different thermophysical and optical properties, leading to the formation of two initially isolated plasmas. The mechanisms of mixing in these plasmas and their direct implications on spectral emission and chemical imaging remain largely unknown. We investigate the mixing dynamics of isolated plasmas produced using femtosecond (fs) laser pulses at the interface between two different model Cu and Sn-Pb samples. Specifically, we study the spatial and temporal mixing dynamics and outer plasma expansion dynamics of the fs plasma components. The time-resolved degree of component mixing, horizontal and vertical expansion, mixing speed, and temperature and electron density of the heterogeneous plasma are characterized. Mixing processes are initiated early on, < 100 ns after the laser pulse, and continue taking place until the end of plasma emission persistence at a constant velocity of 10(4) cm/s. These findings demonstrate that proper selection of detection timing parameters and signal collection position are critically important in precise LIES measurements to ensure that full plasma mixing has taken place and that homogeneous spectral emission is properly detected.
Pre One:Effect of parameter setting and spectral normalization approach on study of matrix effect by laser induced breakdown spectroscopy of Ag–Zn binary composites
Next One:In situ diagnosis of Li-wall conditioning and H/D co-deposition on the first wall of EAST using laser-induced breakdown spectroscopy
海然,副教授,博士生导师,国家重点研发项目负责人,大连市青年科技之星。博士毕业于大连理工大学等离子体物理专业。2014年9月至2016年10月公派赴美国加州大学伯克利分校-劳伦斯伯克利国家实验室进行博士联合培养。
主要从事基于激光光谱技术托卡马克装置内壁状态原位诊断、等离子体与壁材料相互作用研究,同时,包括环境污染、工业样品中多元素成分的远程、实时、定量化激光光谱分析、有机物快速分类等研究工作。在Optics express, Journal of Analytical Atomic Spectrometry, Spectrochimica Acta Part B:Atomic Spectroscopy等国外核心杂志发表SCI论文30余篇,SCI-Q1分区封面论文3篇,已授权发明专利10项;承担国家及省部级科研项目4项,参与重大科研项目多项,是我校牵头的国家重大ITER专项的研究骨干成员。