Ran Hai

Associate Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Gender:Male

Alma Mater:大连理工大学

Degree:Doctoral Degree

School/Department:物理学院

Discipline:Plasma physics

E-Mail:rhai@dlut.edu.cn


Paper Publications

Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air

Hits:

Indexed by:期刊论文

Date of Publication:2016-04-01

Journal:PLASMA SCIENCE & TECHNOLOGY

Included Journals:SCIE、EI、Scopus

Volume:18

Issue:4

Page Number:364-369

ISSN No.:1009-0630

Key Words:laser-induced breakdown spectroscopy; magnetic field; tungsten plasma; spatial evolution

Abstract:In this work, laser induced tungsten plasma has been investigated in the absence and presence of 0.6 T static transverse magnetic field at atmospheric pressure in air. The spectroscopic characterization of laser induced tungsten plasma was experimentally studied using space-resolved emission spectroscopy. The atomic emission lines of tungsten showed a significant enhancement in the presence of a magnetic field, while the ionic emission lines of tungsten presented little change. Temporal variation of the optical emission lines of tungsten indicated that the atomic emission time in the presence of a magnetic field was longer than that in the absence of a magnetic field, while no significant changes occurred for the ionic emission time. The spatial resolution of optical emission lines of tungsten demonstrated that the spatial distribution of atoms and ions were separated. The influence of a magnetic field on the spatial distribution of atoms was remarkable, whereas the spatial distribution of ions was little influenced by the magnetic field. The different behaviors between ions and atoms with and without magnetic field in air were related to the various atomic processes especially the electrons and ions recombination process during the plasma expansion and cooling process.

Pre One:Preparation and characterization of a tungsten coating layer on CuCrZr alloy for the plasma facing components of the east

Next One:Characterization of Carbon Plasma Evolution Using Laser Ablation TOF Mass Spectrometry

Profile

海然,副教授,博士生导师,国家重点研发计划-青年项目负责人,大连市高端人才,大连市青年科技之星。博士毕业于大连理工大学等离子体物理专业。2014-2016年公派美国加州大学伯克利分校-劳伦斯伯克利国家实验室进行博士联合培养。

主要从事等离子体诊断、等离子体与材料相互作用,和工业、环境领域先进激光光谱技术开发及应用研究。近年来,重点针对磁约束核聚变装置运行极端环境,发展了壁材料元素、结构、服役性能的激光光谱诊断新技术,实现了远程、在线、定量化分析的目标。在Optics express, Journal of Analytical Atomic Spectrometry, Spectrochimica Acta Part B:Atomic Spectroscopy等国外核心杂志发表SCI论文60余篇,一作一区封面论文3篇,已授权发明专利12项;承担国家及省部级科研项目4项,参与重大科研项目多项,是我校牵头的国家重大ITER专项的研究骨干成员。