Indexed by:Journal Papers
Date of Publication:2019-08-28
Journal:PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Included Journals:SCIE
Volume:21
Issue:32
Page Number:17786-17791
ISSN No.:1463-9076
Abstract:To reveal the effect of a striped superhydrophobic surface on frictional properties, molecular dynamics simulations were carried out to study the frictional properties of Couette flow. In particular, the influence of load on flow properties was considered in this work. The results showed that regions of gas in the groove and a low density region near the superhydrophobic surface were formed. Under a certain load, convex menisci appeared on top of the groove and some fluid atoms were trapped in it. Compared with the smooth hydrophobic surface, the striped superhydrophobic surface showed a reduction in friction owing to reduced liquid-solid contact area. With increasing load, the number of fluid atoms trapped in the groove increased prominently, which increased the friction force of the striped superhydrophobic surface more quickly. There was a critical load (P-crit), such that the friction-reduction property of striped superhydrophobic surfaces appeared only when the load was smaller than it. By reducing the distance between adjacent stripes, the rate of increase in the number of fluid atoms trapped in grooves with load decreased significantly, which increased P-crit. Under a large load, the friction force decreased with the distance between adjacent stripes. However, under a small load we observed the opposite trend.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Open time:..
The Last Update Time:..