Indexed by:期刊论文
Date of Publication:2014-09-01
Journal:MICROFLUIDICS AND NANOFLUIDICS
Included Journals:SCIE、EI
Volume:17
Issue:3
Page Number:581-589
ISSN No.:1613-4982
Key Words:Nanofluids; Molecular dynamics method; Flow behaviors; Two-phase flow
Abstract:The flow behaviors of nanofluids were studied in this paper using molecular dynamics (MD) simulation. Two MD simulation systems that are the near-wall model and main flow model were built. The nanofluid model consisted of one copper nanoparticle and liquid argon as base liquid. For the near-wall model, the nanoparticle that was very close to the wall would not move with the main flowing due to the overlap between the solid-like layer near the wall and the adsorbed layer around the nanoparticle, but it still had rotational motion. When the nanoparticle is far away from the wall (d > 11 ), the nanoparticle not only had rotational motion, but also had translation. In the main flow model, the nanoparticle would rotate and translate besides main flowing. There was slip velocity between nanoparticles and liquid argon in both of the two simulation models. The flow behaviors of nanofluids exhibited obviously characteristics of two-phase flow. Because of the irregular motions of nanoparticles and the slip velocity between the two phases, the velocity fluctuation in nanofluids was enhanced.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Open time:..
The Last Update Time:..