• 更多栏目

    胡成志

    • 副教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程
    • 电子邮箱:huchengzhi@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Molecular dynamics simulation of effects of nanoparticles on frictional heating and tribological properties at various temperatures

    点击次数:

    论文类型:期刊论文

    发表时间:2020-06-01

    发表刊物:FRICTION

    收录刊物:SCIE

    卷号:8

    期号:3

    页面范围:531-541

    ISSN号:2223-7690

    关键字:nanoparticles; molecular dynamics; temperature; tribological properties

    摘要:The temperature of a friction pair exerts considerable influence on the tribological behavior of a system. In two cases, one with and the other without Cu (copper) nanoparticles, the temperature increase in friction pairs caused by frictional heating and its tribological properties at various temperatures are studied by using the molecular dynamics approach. The results show that temperature distribution and surface abrasion are significantly improved by the presence of Cu nanoparticles. This is one of the reasons for the improvements in tribological properties achieved in the presence of nanoparticles. The temperature and range of influence of frictional heating for the model without nanoparticles are significantly increased with the increase in the sliding velocity; however, in the model with nanoparticles, the temperature gradient is confined to the area near the Cu film. With an increase in the temperature of the friction pair, the improvement in anti-wear properties associated with the presence of Cu nanoparticles becomes more significant.