教授 博士生导师 硕士生导师
性别: 男
毕业院校: 北京航空航天大学
学位: 博士
所在单位: 信息与通信工程学院
学科: 通信与信息系统. 信号与信息处理. 电路与系统
办公地点: 创新园大厦A520
联系方式: Tel: 86-0411-84707719 实验室网址: http://wican.dlut.edu.cn
电子邮箱: mljin@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2012-07-01
发表刊物: WIRELESS COMMUNICATIONS & MOBILE COMPUTING
收录刊物: SCIE、EI、Scopus
卷号: 12
期号: 10
页面范围: 891-900
ISSN号: 1530-8669
关键字: wireless sensor networks; tracking; particle filter; proposal distribution
摘要: Benefitting from its ability to estimate the target state's posterior probability density function (PDF) in complex nonlinear and non-Gaussian circumstance, particle filter (PF) is widely used to solve the target tracking problem in wireless sensor networks. However, the traditional PF algorithm based on sequential importance sampling with re-sampling will degenerate if the latest observation appear in the tail of the prior PDF or if the observation likelihood is too peaked in comparison with the prior. In this paper, we propose an improved particle filter which makes full use of the latest observation in constructing the proposal distribution. The quality prediction function is proposed to measure the quality of the particles, and only the high quality particles are selected and used to generate the coarse proposal distribution. Then, a centroid shift vector is calculated based on the coarse proposal distribution, which leads the particles move towards the optimal proposal distribution. Simulation results demonstrate the robustness of the proposed algorithm under the challenging background conditions. Copyright (C) 2010 John Wiley & Sons, Ltd.